Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(7): e28000, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560149

RESUMO

MicroRNAs (miRNAs) play a crucial role in mRNA regulation. Identifying functionally important mRNA targets of a specific miRNA is essential for uncovering its biological function and assisting miRNA-based drug development. Datasets of high-throughput direct bona fide miRNA-target interactions (MTIs) exist only for a few model organisms, prompting the need for computational prediction. However, the scarcity of data poses a challenge in training accurate machine learning models for MTI prediction. In this study, we explored the potential of transfer learning technique (with ANN and XGB) to address the limited data challenge by leveraging the similarities in interaction rules between species. Furthermore, we introduced a novel approach called TransferSHAP for estimating the feature importance of transfer learning in tabular dataset tasks. We demonstrated that transfer learning improves MTI prediction accuracy for species with limited datasets and identified the specific interaction features the models employed to transfer information across different species.

2.
Int J Mol Sci ; 25(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38255963

RESUMO

Circulating miRNAs are increasingly being considered as biomarkers in various medical contexts, but the value of analyzing isomiRs (isoforms of canonical miRNA sequences) has not frequently been assessed. Here we hypothesize that an in-depth analysis of the full circulating miRNA landscape could identify specific isomiRs that are stronger biomarkers, compared to their corresponding miRNA, for identifying increased CV risk in patients with non-alcoholic fatty liver disease (NAFLD)-a clinical unmet need. Plasma miRNAs were sequenced with next-generation sequencing (NGS). Liver fat content was measured with magnetic-resonance spectrometry (MRS); CV risk was determined, beyond using traditional biomarkers, by a CT-based measurement of coronary artery calcium (CAC) score and the calculation of a CAC score-based CV-risk percentile (CAC-CV%). This pilot study included n = 13 patients, age > 45 years, with an MRS-measured liver fat content of ≥5% (wt/wt), and free of overt CVD. NGS identified 1103 miRNAs and 404,022 different isomiRs, of which 280 (25%) and 1418 (0.35%), respectively, passed an abundance threshold. Eighteen (sixteen/two) circulating miRNAs correlated positively/negatively, respectively, with CAC-CV%, nine of which also significantly discriminated between high/low CV risk through ROC-AUC analysis. IsomiR-ome analyses uncovered 67 isomiRs highly correlated (R ≥ 0.55) with CAC-CV%. Specific isomiRs of miRNAs 101-3p, 144-3p, 421, and 484 exhibited stronger associations with CAC-CV% compared to their corresponding miRNA. Additionally, while miRNAs 140-3p, 223-3p, 30e-5p, and 342-3p did not correlate with CAC-CV%, specific isomiRs with altered seed sequences exhibited a strong correlation with coronary atherosclerosis burden. Their predicted isomiRs-specific targets were uniquely enriched (compared to their canonical miRNA sequence) in CV Disease (CVD)-related pathways. Two of the isomiRs exhibited discriminative ROC-AUC, and another two showed a correlation with reverse cholesterol transport from cholesterol-loaded macrophages to ApoB-depleted plasma. In summary, we propose a pipeline for exploring circulating isomiR-ome as an approach to uncover novel and strong CVD biomarkers.


Assuntos
Doenças Cardiovasculares , MicroRNA Circulante , MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Humanos , Pessoa de Meia-Idade , MicroRNAs/genética , Cálcio , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/genética , Projetos Piloto , Fatores de Risco , Cálcio da Dieta , MicroRNA Circulante/genética , Biomarcadores , Fatores de Risco de Doenças Cardíacas , Colesterol
3.
J Clin Endocrinol Metab ; 109(3): 858-867, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-37713174

RESUMO

CONTEXT: The severity of visceral adipose tissue (VAT) inflammation in individuals with obesity is thought to signify obesity subphenotype(s) associated with higher cardiometabolic risk. Yet, this tissue is not accessible for direct sampling in the nonsurgical patient. OBJECTIVE: We hypothesized that circulating miRNAs (circ-miRs) could serve as biomarkers to distinguish human obesity subgroups with high or low extent of VAT inflammation. METHODS: Discovery and validation cohorts of patients living with obesity undergoing bariatric surgery (n = 35 and 51, respectively) were included. VAT inflammation was classified into low/high based on an expression score derived from the messenger RNA levels of TNFA, IL6, and CCL2 (determined by reverse transcription polymerase chain reaction). Differentially expressed circ-miRs were identified, and their discriminative power to detect low/high VAT inflammation was assessed by receiver operating characteristic-area under the curve (ROC-AUC) analysis. RESULTS: Fifty three out of 263 circ-miRs (20%) were associated with high-VAT inflammation according to Mann-Whitney analysis in the discovery cohort. Of those, 12 (12/53 = 23%) were differentially expressed according to Deseq2, and 6 significantly discriminated between high- and low-VAT inflammation with ROC-AUC greater than 0.8. Of the resulting 5 circ-miRs that were differentially abundant in all 3 statistical approaches, 3 were unaffected by hemolysis and validated in an independent cohort. Circ-miRs 181b-5p, 1306-3p, and 3138 combined with homeostatic model assessment of insulin resistance (HOMA-IR) exhibited ROC-AUC of 0.951 (95% CI, 0.865-1) and 0.808 (95% CI, 0.654-0.963) in the discovery and validation cohorts, respectively, providing strong discriminative power between participants with low- vs high-VAT inflammation. Predicted target genes of these miRNAs are enriched in pathways of insulin and inflammatory signaling, circadian entrainment, and cellular senescence. CONCLUSION: Circ-miRs that identify patients with low- vs high-VAT inflammation constitute a putative tool to improve personalized care of patients with obesity.


Assuntos
Resistência à Insulina , MicroRNAs , Humanos , Gordura Intra-Abdominal/metabolismo , Gordura Subcutânea/metabolismo , Obesidade/complicações , Obesidade/genética , Obesidade/metabolismo , Inflamação/metabolismo , Resistência à Insulina/genética , MicroRNAs/metabolismo , Tecido Adiposo/metabolismo
4.
Mol Psychiatry ; 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38135756

RESUMO

Tachykinin receptor 3 (TACR3) is a member of the tachykinin receptor family and falls within the rhodopsin subfamily. As a G protein-coupled receptor, it responds to neurokinin B (NKB), its high-affinity ligand. Dysfunctional TACR3 has been associated with pubertal failure and anxiety, yet the mechanisms underlying this remain unclear. Hence, we have investigated the relationship between TACR3 expression, anxiety, sex hormones, and synaptic plasticity in a rat model, which indicated that severe anxiety is linked to dampened TACR3 expression in the ventral hippocampus. TACR3 expression in female rats fluctuates during the estrous cycle, reflecting sensitivity to sex hormones. Indeed, in males, sexual development is associated with a substantial increase in hippocampal TACR3 expression, coinciding with elevated serum testosterone and a significant reduction in anxiety. TACR3 is predominantly expressed in the cell membrane, including the presynaptic compartment, and its modulation significantly influences synaptic activity. Inhibition of TACR3 activity provokes hyperactivation of CaMKII and enhanced AMPA receptor phosphorylation, associated with an increase in spine density. Using a multielectrode array, stronger cross-correlation of firing was evident among neurons following TACR3 inhibition, indicating enhanced connectivity. Deficient TACR3 activity in rats led to lower serum testosterone levels, as well as increased spine density and impaired long-term potentiation (LTP) in the dentate gyrus. Remarkably, aberrant expression of functional TACR3 in spines results in spine shrinkage and pruning, while expression of defective TACR3 increases spine density, size, and the magnitude of cross-correlation. The firing pattern in response to LTP induction was inadequate in neurons expressing defective TACR3, which could be rectified by treatment with testosterone. In conclusion, our study provides valuable insights into the intricate interplay between TACR3, sex hormones, anxiety, and synaptic plasticity. These findings highlight potential targets for therapeutic interventions to alleviate anxiety in individuals with TACR3 dysfunction and the implications of TACR3 in anxiety-related neural changes provide an avenue for future research in the field.

5.
Bioinform Adv ; 3(1): vbad138, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37840905

RESUMO

Summary: The CRISPR-Cas9 system has been adapted to achieve targeted genome editing as well as transcriptional control by customizing 20-nt guide RNA (gRNA) molecules for desired regions in the target genome. Designing gRNAs must consider nonspecific and unintended binding, known as off-targets, since these may have potentially harmful effects. To assist in gRNA design, we have developed OffRisk. This Docker-based tool annotates off-target sites in the human genome and assigns them a potential risk label by incorporating functional and regulatory information at different molecular levels. Availability and implementation: OffRisk is available at https://github.com/IsanaVekslerLublinsky/OffRisk and https://github.com/IsanaVekslerLublinsky/OffRisk-ui (including code, user guide, docker installation guide, and running examples).All processed datasets are available at https://zenodo.org/record/8289271.

6.
Obesity (Silver Spring) ; 31(12): 2986-2997, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37746932

RESUMO

OBJECTIVE: In obesity, adipocyte hypertrophy is detrimental to health, but its' interrelation with fibrosis in the visceral adipose tissue (VAT) depot remains unclear. Because VAT is less accessible via biopsy, biomarkers for VAT quality are needed. The authors hypothesized that VAT adipocyte size and fibrosis are interrelated and can be estimated by circulating microRNAs (circ-miRNAs), contributing to subphenotyping obesity. METHODS: Adipocyte size and AT fibrosis were estimated in n = 43 participants (BMI ≥ 30 kg/m2 ). Circ-miRNAs were sequenced (Next Generation Sequencing). RESULTS: Participants with above- versus below-median VAT adipocyte area exhibited metabolic dysfunction but lower total and pericellular fibrosis. VAT adipocyte size remained associated with metabolic dysfunction even when controlling for BMI or VAT fibrosis in the entire cohort, as in matched-pairs subanalyses. Next Generation Sequencing uncovered 22 and 6 circ-miRNAs associated with VAT adipocyte size and fibrosis, respectively, with miRNA-130b-3p common to both analyses. The combination of miRNA-130b-3p + miR-150-5p + high-density lipoprotein cholesterol discriminated among those with large versus small VAT adipocytes (receiver operating characteristic-area under the curve: 0.872 [95% CI: 0.747-0.996]), whereas miRNA-130b-3p + miRNA-15a-5p + high-density lipoprotein cholesterol discriminated among those with low and high fibrosis (receiver operating characteristic-area under the curve: 0.823 [95% CI: 0.676-0.97]). CONCLUSIONS: These findings suggest that VAT adipocyte size and fibrosis are inversely correlated in obesity and can be estimated by distinct circ-miRNAs, providing a potential tool to subphenotype obesity via a liquid biopsy-like approach to assess VAT health in nonsurgical patients.


Assuntos
MicroRNAs , Obesidade , Humanos , Obesidade/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Adipócitos/metabolismo , Fibrose , Lipoproteínas HDL/metabolismo , Colesterol
7.
Microbiol Spectr ; : e0170423, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37750703

RESUMO

Pseudogenes, once considered "junk DNA" based on the incorrect assumption that the absence of full coding potential means a complete lack of functionality, have recently become a subject of significant interest in the scientific community. Concurrently, it is widely assumed that bacterial genomes are compact and have a high density of coding genes with little room for non-coding genes, including pseudogenes. A key aspect of genome annotation is the correct identification of genes and the distinction between coding genes and pseudogenes, as it directly impacts functional and comparative genomics studies. In this study, we analyzed the genomic data of 4,699 strains of the bacterium Pseudomonas aeruginosa (P. aeruginosa) as they exhibit high variability in the number of annotated pseudogenes. In particular, we looked for correlations between the number of pseudogenes and other genomic and meta-features of the strains. We identified clusters of orthologous genes and pseudogenes and compared cluster size distributions and length homogeneity within clusters. We then mapped and examined orthology relationships between genes and pseudogenes. Additionally, we generated a phylogenetic tree of the strains and found that phylogenetically related strains are more homogeneous in the number of pseudogenes and share a significant amount of pseudogenes. Finally, we delved into clusters of orthologous genes and pseudogenes and quantified their phylogenetic neighborhood, classifying pseudogenes into evolutionary preserved pseudogenes, mis-annotated pseudogenes, or pseudogenes formed by failed horizontal transfer events. This in-depth study provides important insights that can be incorporated into pseudogene annotation pipelines in the future. IMPORTANCE Accurate annotation of genes and pseudogenes is vital for comparative genomics analysis. Recent studies have shown that bacterial pseudogenes have an important role in regulatory processes and can provide insight into the evolutionary history of homologous genes or the genome as a whole. Due to pseudogenes' nature as non-functional genes, there is no commonly accepted definition of a pseudogene, which poses difficulties in verifying the annotation through experimental methods and resolving discrepancies among different annotation techniques. Our study introduces an in-depth analysis of annotated genes and pseudogenes and insights that can be incorporated into improved pseudogene annotation pipelines in the future.

8.
Bioinformatics ; 39(4)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37042720

RESUMO

SUMMARY: sInterBase is a comprehensive and easy-to-operate web-based platform for mining experimentally identified sRNA-mRNA interactions in Escherichia coli. Interactions in the database are annotated with an interaction duplex and a set of descriptive features. sInterBase provides advanced functionality, such as flexible search based on various criteria, statistical analysis via charts, browsing, and downloading interactions for further use. AVAILABILITY AND IMPLEMENTATION: sInterBase is available at https://sinterbase.cs.bgu.ac.il/.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , RNA Mensageiro/genética , RNA Bacteriano/genética , Bases de Dados Factuais
9.
Cells ; 11(19)2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36231008

RESUMO

Objective: Up-regulated expression of transcription-factor E2F1 in human visceral adipose tissue (VAT) characterizes a dysmetabolic obesity sub-phenotype. An E2F1-miRNA network has been described in multiple cancers. Here we investigated whether elevated VAT-E2F1 in obesity is associated with VAT-miRNA alterations similar to, or distinct from, those described in cancer. Furthermore, we assessed if E2F1-associated miRNA changes may contribute to the link between high- VAT-E2F1 and a dysmetabolic obesity phenotype. Methods: We assembled a cohort of patients with obesity and high-VAT-E2F1, matched by age, sex, ±BMI to patients with low-VAT-E2F1, with and without obesity (8 patients/groupX3 groups). We performed Nanostring©-based miRNA profiling of VAT samples from all 24 patients. Candidate E2F1-related miRNAs were validated by qPCR in an independent cohort of patients with extreme obesity, with or without type-2-diabetes (T2DM) (n = 20). Bioinformatic tools and manipulation of E2F1 expression in cells were used to establish the plausibility of the functional VAT-E2F1-miRNA network in obesity. Results: Among n = 798 identified miRNAs, 17 were differentially expressed in relation to E2F1 and not to obesity itself. No evidence for the cancer-related E2F1-miRNA network was identified in human VAT in obesity. In HEK293-cells, overexpression/downregulation of E2F1 correspondingly altered the expression of miRNA-206 and miRNA-210-5p, two miRNAs with reported metabolic functions consistent with those of E2F1. In VAT from both cohorts, the expression of both miRNA-206 and 210-5p intercorrelated, and correlated with the expression of E2F1. In cohort 1 we did not detect significant associations with biochemical parameters. In cohort 2 of patients with extreme obesity, all those with high VAT-E2F1 showed a diabetes-complicated obesity phenotype and higher expression of miRNA-206 and miRNA-210-5p, which also correlated with fasting glucose levels (both miRNAs) and fasting insulin (miRNA-210-5p). Conclusions: Whilst the previously described cancer-related E2F1-miRNA network does not appear to operate in VAT in obesity, miRNAs-206 and 210-5p may link high-E2F1 expression in VAT with diabetes-complicated extreme obesity phenotype.


Assuntos
Diabetes Mellitus Tipo 2 , MicroRNAs , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Glucose/metabolismo , Células HEK293 , Humanos , Insulina/metabolismo , Gordura Intra-Abdominal/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Obesidade/genética , Obesidade/metabolismo
10.
Int J Mol Sci ; 23(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36012734

RESUMO

The Russian sturgeon (Acipenser gueldenstaedtii, AG) is an endangered fish species increasingly raised on fish farms for black caviar. Understanding the process of sex determination in AG is, therefore, of scientific and commercial importance. AG lacks sexual dimorphism until sexual maturation and has a predominantly octoploid genome without a definite sex chromosome. A conserved short female-specific genomic sequence was recently described, leading to the development of a genetic sex marker. However, no biological function has been reported for this sequence. Thus, the mechanism of sex determination and the overall inter-sex genomic variation in AG are still unknown. To comprehensively analyze the inter-sex genomic variation and assess the overall inter-species variation between AG and A. ruthenus (AR, sterlet), a related tetraploid sturgeon species, we performed whole-genome sequencing on DNA from 10 fish-farm-raised adult AG (5 males and 5 females). We produced a partially assembled, ~2390 MBp draft genome for AG. We validated in AG the female-specific region previously described in AR. We identified ~2.8 million loci (SNP/indels) varying between the species, but only ~7400 sex-associated loci in AG. We mapped the sex-associated AG loci to the AR genome and identified 15 peaks of sex-associated variation (10 kb segments with 30 or more sex-associated variants), 1 of which matched the previously reported sex-variable region. Finally, we identified 14 known and predicted genes in proximity to these peaks. Our analysis suggests that one or more of these genes may have functional roles in sex determination and/or sexual differentiation in sturgeons. Further functional studies are required to elucidate these roles.


Assuntos
Peixes , Diferenciação Sexual , Animais , Espécies em Perigo de Extinção , Feminino , Peixes/genética , Marcadores Genéticos , Genômica , Masculino , Diferenciação Sexual/genética
11.
RNA Biol ; 19(1): 928-942, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35848953

RESUMO

microRNAs (miRNAs) are small non-coding RNAs that regulate gene expression through translational repression and mRNA destabilization. During canonical miRNA biogenesis, several miRNA isoforms, or isomiRs, are produced from a single precursor miRNA. Templated isomiRs are generated through Drosha or Dicer cleavage at alternate positions on either the primary or the precursor miRNAs, generating truncated or extended 5' and/or 3' miRNA ends. As changes to the mature miRNA sequence can alter miRNA gene target repertoire, we investigated the extent of templated isomiR prevalence, providing a profiling map for templated isomiRs across stages of C. elegans development. While most miRNA loci did not produce abundant templated isomiRs, a substantial number of miRNA loci produced isomiRs were just as, or more, abundant than their annotated canonical mature miRNAs. 3' end miRNA alterations were more frequent than the seed-altering 5' end extensions or truncations. However, we identified several miRNA loci that produced a considerable amount of isomiRs with 5' end alterations, predicted to target new, distinct sets of genes. Overall, the presented annotation of templated isomiR dynamics across C. elegans developmental stages provides a basis for further studies into miRNA biogenesis and the intriguing potential of functional miRNA diversification through isomiR production.


Assuntos
Caenorhabditis elegans , MicroRNAs , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Regulação da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo
12.
Sci Rep ; 12(1): 7133, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35504914

RESUMO

microRNAs (miRNAs) are crucial for normal development and physiology. To identify factors that might coordinate with miRNAs to regulate gene expression, we used 2'O-methylated oligonucleotides to precipitate Caenorhabditis elegans let-7, miR-58, and miR-2 miRNAs and the associated proteins. A total of 211 proteins were identified through mass-spectrometry analysis of miRNA co-precipitates, which included previously identified interactors of key miRNA pathway components. Gene ontology analysis of the identified interactors revealed an enrichment for RNA binding proteins, suggesting that we captured proteins that may be involved in mRNA lifecycle. To determine which miRNA interactors are important for miRNA activity, we used RNAi to deplete putative miRNA co-factors in animals with compromised miRNA activity and looked for alterations of the miRNA mutant phenotypes. Depletion of 25 of 39 tested genes modified the miRNA mutant phenotypes in three sensitized backgrounds. Modulators of miRNA phenotypes ranged from RNA binding proteins RBD-1 and CEY-1 to metabolic factors such as DLST-1 and ECH-5, among others. The observed functional interactions suggest widespread coordination of these proteins with miRNAs to ultimately regulate gene expression. This study provides a foundation for future investigations aimed at deciphering the molecular mechanisms of miRNA-mediated gene regulation.


Assuntos
Proteínas de Caenorhabditis elegans , MicroRNAs , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , MicroRNAs/metabolismo , Interferência de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
13.
Cell Rep ; 39(4): 110745, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35476978

RESUMO

Base pairing of the seed region (g2-g8) is essential for microRNA targeting; however, the in vivo function of the 3' non-seed region (g9-g22) is less well understood. Here, we report a systematic investigation of the in vivo roles of 3' non-seed nucleotides in microRNA let-7a, whose entire g9-g22 region is conserved among bilaterians. We find that the 3' non-seed sequence functionally distinguishes let-7a from its family paralogs. The complete pairing of g11-g16 is essential for let-7a to fully repress multiple key targets, including evolutionarily conserved lin-41, daf-12, and hbl-1. Nucleotides at g17-g22 are less critical but may compensate for mismatches in the g11-g16 region. Interestingly, a certain minimal complementarity to let-7a 3' non-seed sequence can be required even for sites with perfect seed pairing. These results provide evidence that the specific configurations of both seed and 3' non-seed base pairing can critically influence microRNA-mediated gene regulation in vivo.


Assuntos
MicroRNAs , Pareamento de Bases/genética , MicroRNAs/genética , Nucleotídeos
14.
Nucleic Acids Res ; 49(19): 11167-11180, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34586415

RESUMO

microRNAs are frequently modified by addition of untemplated nucleotides to the 3' end, but the role of this tailing is often unclear. Here we characterize the prevalence and functional consequences of microRNA tailing in vivo, using Caenorhabditis elegans. MicroRNA tailing in C. elegans consists mostly of mono-uridylation of mature microRNA species, with rarer mono-adenylation which is likely added to microRNA precursors. Through a targeted RNAi screen, we discover that the TUT4/TUT7 gene family member CID-1/CDE-1/PUP-1 is required for uridylation, whereas the GLD2 gene family member F31C3.2-here named GLD-2-related 2 (GLDR-2)-is required for adenylation. Thus, the TUT4/TUT7 and GLD2 gene families have broadly conserved roles in miRNA modification. We specifically examine the role of tailing in microRNA turnover. We determine half-lives of microRNAs after acute inactivation of microRNA biogenesis, revealing that half-lives are generally long (median = 20.7 h), as observed in other systems. Although we observe that the proportion of tailed species increases over time after biogenesis, disrupting tailing does not alter microRNA decay. Thus, tailing is not a global regulator of decay in C. elegans. Nonetheless, by identifying the responsible enzymes, this study lays the groundwork to explore whether tailing plays more specialized context- or miRNA-specific regulatory roles.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Genoma Helmíntico , MicroRNAs/genética , RNA de Helmintos/genética , Uridina Monofosfato/metabolismo , Monofosfato de Adenosina/metabolismo , Animais , Caenorhabditis elegans/classificação , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Galinhas/classificação , Galinhas/genética , Galinhas/metabolismo , Sequência Conservada , Regulação da Expressão Gênica , Meia-Vida , Humanos , Camundongos , MicroRNAs/antagonistas & inibidores , MicroRNAs/classificação , MicroRNAs/metabolismo , Filogenia , Interferência de RNA , Estabilidade de RNA , RNA de Helmintos/classificação , RNA de Helmintos/metabolismo , Especificidade da Espécie , Peixe-Zebra/classificação , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
15.
BMC Bioinformatics ; 22(1): 264, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34030625

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression post-transcriptionally via base-pairing with complementary sequences on messenger RNAs (mRNAs). Due to the technical challenges involved in the application of high-throughput experimental methods, datasets of direct bona fide miRNA targets exist only for a few model organisms. Machine learning (ML)-based target prediction models were successfully trained and tested on some of these datasets. There is a need to further apply the trained models to organisms in which experimental training data are unavailable. However, it is largely unknown how the features of miRNA-target interactions evolve and whether some features have remained fixed during evolution, raising questions regarding the general, cross-species applicability of currently available ML methods. RESULTS: We examined the evolution of miRNA-target interaction rules and used data science and ML approaches to investigate whether these rules are transferable between species. We analyzed eight datasets of direct miRNA-target interactions in four species (human, mouse, worm, cattle). Using ML classifiers, we achieved high accuracy for intra-dataset classification and found that the most influential features of all datasets overlap significantly. To explore the relationships between datasets, we measured the divergence of their miRNA seed sequences and evaluated the performance of cross-dataset classification. We found that both measures coincide with the evolutionary distance between the compared species. CONCLUSIONS: The transferability of miRNA-targeting rules between species depends on several factors, the most associated factors being the composition of seed families and evolutionary distance. Furthermore, our feature-importance results suggest that some miRNA-target features have evolved while others remained fixed during the evolution of the species. Our findings lay the foundation for the future development of target prediction tools that could be applied to "non-model" organisms for which minimal experimental data are available. AVAILABILITY AND IMPLEMENTATION: The code is freely available at https://github.com/gbenor/TPVOD .


Assuntos
MicroRNAs , Algoritmos , Animais , Bovinos , Aprendizado de Máquina , Camundongos , MicroRNAs/genética , RNA Mensageiro
16.
Biology (Basel) ; 10(3)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809419

RESUMO

Markers of genetic variation between species are important for both applied and basic research. Here, various genes of the blue gourami (Trichogaster trichopterus, suborder Anabantoidei, a model labyrinth fish), many of them involved in growth and reproduction, are reviewed as markers of genetic variation. The genes encoding the following hormones are described: kisspeptins 1 and 2, gonadotropin-releasing hormones 1, 2, and 3, growth hormone, somatolactin, prolactin, follicle- stimulating hormone and luteinizing hormone, as well as mitochondrial genes encoding cytochrome b and 12S rRNA. Genetic markers in blue gourami, representing the suborder Anabantoidei, differ from those in other bony fishes. The sequence of the mitochondrial cytochrome c oxidase subunit 1 (COI) gene of blue gourami is often used to study the Anabantoidei suborder. Among the genes involved in controlling growth and reproduction, the most suitable genetic markers for distinguishing between species of the Anabantoidei have functions in the hypothalamic-pituitary-somatotropic axis: pituitary adenylate cyclase-activating polypeptide and growth hormone, and the 12S rRNA gene.

17.
Bioinformatics ; 37(3): 303-311, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32804993

RESUMO

MOTIVATION: High-resolution microbial strain typing is essential for various clinical purposes, including disease outbreak investigation, tracking of microbial transmission events and epidemiological surveillance of bacterial infections. The widely used approach for multilocus sequence typing (MLST) that is based on the core genome, cgMLST, has the advantage of a high level of typeability and maximal discriminatory power. Yet, the transition from a seven loci-based scheme to cgMLST involves several challenges, that include the need by some users to maintain backward compatibility, growing difficulties in the day-to-day communication within the microbiology community with respect to nomenclature and ontology, issues with typeability, especially if a more stringent approach to loci presence is used, and computational requirements concerning laboratory data management and sharing with end-users. Hence, methods for optimizing cgMLST schemes through careful reduction of the number of loci are expected to be beneficial for practical needs in different settings. RESULTS: We present a new machine learning-based methodology, minMLST, for minimizing the number of genes in cgMLST schemes by identifying subsets of informative genes and analyzing the trade-off between gene reduction and typing performance. The results achieved with minMLST over eight bacterial species show that despite the reduction in the number of genes up to a factor of 10, the typing performance remains very high and significant with an Adjusted Rand Index that ranges between 0.4 and 0.93 in different species and a P-value < 10-3. The identification of such optimized MLST schemes for bacterial strain typing is expected to improve the implementation of cgMLST by improving interlaboratory agreement and communication. AVAILABILITY AND IMPLEMENTATION: The python package minMLST is available at https://PyPi.org/project/minmlst/PyPI and supported on Linux and Windows. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Surtos de Doenças , Genoma Bacteriano , Técnicas de Tipagem Bacteriana , Aprendizado de Máquina , Tipagem de Sequências Multilocus , Filogenia
18.
Genome Biol ; 20(1): 270, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31823826

RESUMO

BACKGROUND: Multicellular animals and bacteria frequently engage in predator-prey and host-pathogen interactions, such as the well-studied relationship between Pseudomonas aeruginosa and the nematode Caenorhabditis elegans. This study investigates the genomic and genetic basis of bacterial-driven variability in P. aeruginosa virulence towards C. elegans to provide evolutionary insights into host-pathogen relationships. RESULTS: Natural isolates of P. aeruginosa that exhibit diverse genomes display a broad range of virulence towards C. elegans. Using gene association and genetic analysis, we identify accessory genome elements that correlate with virulence, including both known and novel virulence determinants. Among the novel genes, we find a viral-like mobile element, the teg block, that impairs virulence and whose acquisition is restricted by CRISPR-Cas systems. Further genetic and genomic evidence suggests that spacer-targeted elements preferentially associate with lower virulence while the presence of CRISPR-Cas associates with higher virulence. CONCLUSIONS: Our analysis demonstrates substantial strain variation in P. aeruginosa virulence, mediated by specific accessory genome elements that promote increased or decreased virulence. We exemplify that viral-like accessory genome elements that decrease virulence can be restricted by bacterial CRISPR-Cas immune defense systems, and suggest a positive, albeit indirect, role for host CRISPR-Cas systems in virulence maintenance.


Assuntos
Caenorhabditis elegans/microbiologia , Interações Hospedeiro-Patógeno/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade , Animais , Sistemas CRISPR-Cas , Genoma Bacteriano , Sequências Repetitivas Dispersas
19.
PLoS Genet ; 15(10): e1008067, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31584932

RESUMO

microRNAs (miRNAs) are potent regulators of gene expression that function in diverse developmental and physiological processes. Argonaute proteins loaded with miRNAs form the miRNA Induced Silencing Complexes (miRISCs) that repress gene expression at the post-transcriptional level. miRISCs target genes through partial sequence complementarity between the miRNA and the target mRNA's 3' UTR. In addition to being targeted by miRNAs, these mRNAs are also extensively regulated by RNA-binding proteins (RBPs) through RNA processing, transport, stability, and translation regulation. While the degree to which RBPs and miRISCs interact to regulate gene expression is likely extensive, we have only begun to unravel the mechanisms of this functional cooperation. An RNAi-based screen of putative ALG-1 Argonaute interactors has identified a role for a conserved RNA binding protein, HRPK-1, in modulating miRNA activity during C. elegans development. Here, we report the physical and genetic interaction between HRPK-1 and ALG-1/miRNAs. Specifically, we report the genetic and molecular characterizations of hrpk-1 and its role in C. elegans development and miRNA-mediated target repression. We show that loss of hrpk-1 causes numerous developmental defects and enhances the mutant phenotypes associated with reduction of miRNA activity, including those of lsy-6, mir-35-family, and let-7-family miRNAs. In addition to hrpk-1 genetic interaction with these miRNA families, hrpk-1 is required for efficient regulation of lsy-6 target cog-1. We report that hrpk-1 plays a role in processing of some but not all miRNAs and is not required for ALG-1/AIN-1 miRISC assembly. We suggest that HRPK-1 may functionally interact with miRNAs by both affecting miRNA processing and by enhancing miRNA/miRISC gene regulatory activity and present models for its activity.


Assuntos
Proteínas Argonautas/genética , Caenorhabditis elegans/genética , Desenvolvimento Embrionário/genética , Complexo de Inativação Induzido por RNA/genética , Regiões 3' não Traduzidas/genética , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte/genética , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Homeodomínio/genética , MicroRNAs/genética , Domínios Proteicos/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética
20.
J Comput Biol ; 26(7): 745-766, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31140838

RESUMO

Recent advances in Next Generation Sequencing techniques, combined with global efforts to study infectious diseases, yield huge and rapidly-growing databases of microbial genomes. These big new data statistically empower genomic-context based approaches to functional analysis: the idea is that groups of genes that are clustered locally together across many genomes usually express protein products that interact in the same biological pathway (e.g., operons). The problem of finding such conserved "gene blocks" in a given genomic data has been studied extensively. In this work, we propose a new gene block discovery problem variant: find conserved gene blocks abiding by a user specification of biological functional constraints. We take advantage of the biological constraints to efficiently prune the search space. This is achieved by modeling the new problem as a special constrained variant of the well-studied "Closed Frequent Itemset Mining" problem, generalized here to handle item duplications. We exemplify the application of the tool we developed for this problem with two different case studies related to microbial ATP (adenosine triphosphate)-binding cassette (ABC) transporters.


Assuntos
Estudos de Associação Genética , Genoma , Família Multigênica , Células Procarióticas/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...